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An anisotropically forced passive vector model is analyzed at scales much smaller and larger than the
forcing scale by solving exactly the equation for the pair correlation function. The model covers the cases of
magnetohydrodynamic turbulence, the linear pressure model, and the linearized Navier-Stokes equations by
choice of a simple parameter. We determine whether or not the anisotropic injection mechanism induces
dominance of the anisotropic effects at the asymptotic scaling regimes. We also show that under very broad
conditions, both scaling regimes exhibit anomalous scaling due to the existence of nontrivial zero modes.

DOI: 10.1103/PhysRevE.79.056303 PACS number�s�: 47.27.E�, 47.27.�i

I. INTRODUCTION

One of the most important problems of turbulence is the
observed deviation of Kolmogorov scaling in the structure
functions of the randomly stirred Navier-Stokes equations in
the inertial range of scales �1�. Contemporary research in
turbulence has recently provided an explanation for this phe-
nomenon in the context of passive advection models �see,
e.g., �2� for an introduction and further references�. In the
case of the passive scalar model describing the behavior of a
dye concentration in a turbulent fluid, such a violation of
canonical scaling behavior �henceforth referred to as anoma-
lous scaling� has recently been traced to the existence of a
type of statistical integrals of motion known as zero modes
�2,3�. The result can be obtained under some simplifying
assumptions about the velocity field, namely, assuming the
velocity statistics to be Gaussian and white noise in time,
which results in a solvable hierarchy of Hopf equations for
the correlation functions. Such properties are included in the
so-called Kraichnan model �4� of velocity statistics, which
will also be utilized in the present work.

As opposed to a thermodynamical equilibrium, the pas-
sive scalar is maintained in a nonequilibrium steady state by
external forcing designed to counter molecular diffusion. It
was proved in �5� that even in the limit of vanishing molecu-
lar diffusivity the steady state exists and is unique. Further-
more defining the integral scale to be infinity results in an
infinite inertial range divided only by the injection scale L
due to the forcing. While the above results of the passive
scalar anomalous scaling were concerned with the small
scale problem r�L, in �6� it was observed that one obtains
anomalous scaling also at large scales, provided the forcing
is of “zero charge,” q0���drCL�r�=0, where CL is the forc-
ing pair correlation function. Such a forcing is concentrated
around finite wave numbers k�1 /L, which behaves simi-
larly to a zero wave number concentrated forcing at small
scales, but is more realistic for probing scales larger than the
forcing scale.

The forcing is usually taken to be statistically isotropic.
Justification for this is that one usually expects the aniso-
tropic effects to be lost anyway at scales much smaller that

the forcing scale, according to a universality hypothesis by
the K41 theory �1�. Nevertheless, in �7� it was discovered
that even a small amount of anisotropy in the forcing �that
can never be avoided in a realistic setting� in the passive
scalar equation would render the large scale behavior to be
dominated by anisotropic zero modes responsible for another
type of anomalous scaling. As pointed out in �7�, such be-
havior is nontrivial also in the sense that one might expect
the system to obey Gibbs statistics with exponentially decay-
ing correlations at large scales, as indeed happens for the pair
correlation function with isotropic zero charge forcing �6�.

The purpose of the present work is to consider the small
and large scale behavior of passive vector models stirred by
an anisotropic forcing and especially to determine if the phe-
nomena of anomalous scaling and persistence of anisotropy
is a general feature of passive advection models or just a
curiosity of the passive scalar. The passive vector models
arise as quite natural generalizations of the scalar problem
and turn out to possess much richer phenomena already at
the level of the pair correlation function. For example the
pair correlation function of the magnetohydrodynamic equa-
tions exhibit anomalous scaling �8� whereas one needs to
study the fourth and higher order structure functions of the
passive scalar to see such behavior �see, e.g., �9� and refer-
ences therein�. It has also been argued that the linear passive
vector models might yield the exact scaling exponents of the
full Navier-Stokes turbulence �10�. The equation under study
is defined as

u̇i − ��ui + v · �ui − au · �vi + �iP = f i, �1�

with a parameter a=−1, 0 or 1, corresponding, respectively,
to the linearized Navier-Stokes equations �abbreviated
henceforth as LNS�, the so-called linear pressure model
�LPM�, and the magnetohydrodynamic �MHD� equations. �
is a constant viscosity/diffusivity term, f i denotes an external
stirring force, vi is a Gaussian, isotropic external velocity
field defined by the Kraichnan model, and P is the pressure,
giving rise to nonlocal interactions. The equation was intro-
duced in �11�, where the authors derived and studied a zero
mode equation for the pair correlation function in the isotro-
pic sector and found the small scale exponents numerically
and to a few first orders in perturbation theory �see also �12�
for a more detailed exposition�. They also reported perturba-
tive results for higher order correlation functions and aniso-*heikki.arponen@helsinki.fi
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tropic sectors using the renormalization group. Although the
purpose of the present work is to consider arbitrary values of
a, some cases have already been studied elsewhere. The a
=1 case, corresponding to magnetohydrodynamic turbu-
lence, has probably received the most attention �8,13–17�.
The linear pressure model �or just the passive vector model�
with a=0 has been studied in, e.g., �12,18,19�. The linearized
Navier-Stokes equation �see �1��, a=−1, was studied in �12�
and numerically in �20� in two dimensions and is the least
known of the above cases, although perhaps the most inter-
esting. The above-mentioned studies have been restricted to
the small scale problem and rely heavily on the zero mode
analysis, i.e., finding the homogeneous solutions to the pair
correlation equation. For our purposes this is not enough. To
capture the anomalous properties as discussed above, one
needs to consider the amplitudes of the zero modes as well,
as it may turn out that some amplitudes vanish. Indeed, it is
exactly this sort of mechanism that is responsible for the
anisotropy dominance in �7�.

We provide an exact solution of the equation for the pair
correlation function with anisotropic forcing and study both
small and large scale behaviors. It turns out that for the “zero
charge” forcing as above, the large scale behavior is anoma-
lous even in the isotropic sector for all a. The anisotropy
dominance seems however rather an exception than a rule in
three dimensions, as only the trace of the correlation function
for the a=0 model exhibits similar phenomena at large
scales. Nevertheless, in two dimensions the anisotropy domi-
nance is a more common phenomenon. Perhaps the most
interesting case is the linearized Navier-Stokes equation for
which a=−1. The field u is now considered to be a small
perturbation to the steady turbulent state described by v. This
case is unfortunately complicated by the fact that practically
nothing is known of the existence of the steady state, al-
though an attempt to rectify the situation is underway by the
present author.

In Sec. II we introduce the necessary tools, discuss the
role of the forcing, and present the equation for the pair
correlation function in a Mellin transformed form. Details of
its derivation can be found in Appendix A. In Sec. III we
present the solution in both isotropic and anisotropic sectors
and explain the results for the passive scalar of �7� in our
formalism. The next three sections are concerned with the
specific cases of magnetohydrodynamic turbulence, linear
pressure model, and the linearized Navier-Stokes equations.
Although the space dimension is arbitrary �although larger
than or equal to two�, we concentrate mostly on two and
three dimensions. The reasons for this are the considerable
differences between d=2 and d=3 cases and the similarities
of dimensions d�3. Mainly one may expect some sort of
logarithmic behavior in two dimensions while in higher di-
mensions the behavior is power law like. Also the presence
of anomalous scaling is seen to be independent of dimension
for d�3, although the actual existence of the steady state
may very well depend on the dimension as observed in �14�.
This will be further studied in an undergoing investigation of
the steady state existence problem. The last section before
the conclusion attempts to shed light on the role of the pa-
rameter a as it is varied between −1 and 1. The actual results

are collected and discussed in the conclusion. We also give
some computational details in the appendices.

II. PRELIMINARIES AND THE EQUATION

All vector quantities in Eq. �1� being divergence free re-
sults in an expression for the pressure after taking the diver-
gence,

P = �1 − a��− ��−1�iv j� jui. �2�

We may then write the equation compactly as

u̇i − ��ui + Dijk�ujvk� = f i, �3�

with a differential operator

Dijk = �ij�k − a�ik� j + �a − 1��i� j�k�
−1, �4�

where �−1 is the inverse Laplacian. The equal time pair cor-
relation is defined as

Gij�t,r� = �ui�t,x + r�uj�t,x�� , �5�

where the angular brackets denote an ensemble average with
respect to the forcing and the velocity field. The equation for
the pair correlation function is then

�tGij − 2���Gij − Di��Di�	�D�	G��� = Cij , �6�

where the velocity and forcing pair correlation tensors Dij
and Cij will be defined below. The above equation should
however be understood in a rather symbolic sense, as the
defining equation for the field u is in fact a stochastic partial
differential equation. The equation is more carefully derived
in Appendix A in Fourier variables using the rules of sto-
chastic calculus. In the present form it is also very difficult to
study because of the nonlocal terms for a�1 and the tenso-
rial structure. We will therefore now briefly explain the struc-
ture of the calculations in a rather superficial but hopefully
transparent way �see Appendix A for details�. Assuming that
we have reached a steady state, i.e., �tG=0, we rewrite Eq.
�6� symbolically as

− 2���G + MG = C , �7�

with the effective diffusivity ��=�− 1
2Dmv

−
 and M is some
complicated integrodifferential operator. Taking the Fourier
transform of the above equation would still leave us with an
integral equation due to the inherent nonlocality from the
pressure term. We deal with this now by taking also the
Mellin transform �after dividing by p2�, which yields

2��ḡ�z� +	 �z�Mz,z�ḡ�z − z�� = c̄�z − 2� �8�

with a rather complicated expression for Mz,z�; see Eq.
�A12�. The advantage of the above form is that various pow-

ers of mv arise as poles in Mz,z��mv
z�−
, the leading ones

residing at z�=0 and z�=
. Other poles produce positive
powers of mv and can therefore be safely neglected. The
residue at z�=0 cancels with the term in the effective diffu-
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sivity, leaving us with only the bare diffusivity �. The re-
maining equation can then be written in the limit of vanish-
ing mv and � as

− R�Mz,z�
z� = 
�ḡ�z − 
� = c̄�z − 2� , �9�

where R denotes the residue �the minus sign arises from the
clockwise contour�. The equation is then simply solved by
dividing by the residue term and using the Mellin transform
inversion formula

G�r� =	 �z
r
zAzḡ�z� , �10�

where Az is a simple z-dependent function arising from the
fact that we performed the Mellin transform on the Fourier
transform of the equation.

A. Kraichnan model

We define the Kraichnan model as in �21� with the veloc-
ity correlation function

�vi�t,r�v j�0,0��

= ��t�	 �dqeiq·rD̂mv
�q�Pij�q� ¬ ��t�Dij�r;mv� , �11�

where we have defined the incompressibility tensor Pij�q�
=�ij − q̂iq̂ j and denoted �dqª ddq

�2��d . Defining

D̂mv
�q� =


D0

�q2 + mv
2�d/2+
/2 �12�

and applying the Mellin transform �See, e.g., �22� and Ap-
pendix A of �9�� we have

D̂mv

z� �q� ª 	
0


 dw

w
wz�+dD̂mv

�wq� = d̄mv
�z��q−z�−d, �13�

where

d̄mv
�z�� =




2
D0mv

z�−
��d/2 + z�/2���
/2 − z�/2�
��d/2 + 
/2�

, �14�

and z� is constrained inside the strip of analyticity −d
�Re�z���
. The parameter 
 takes values between zero and
two and measures the spatial “roughness” of the velocity
statistics. We observe that the scaling behavior of the corre-
lation function is completely encoded in the pole structure of
Mellin transform, with e.g., the pole at z�=
 corresponding
to the leading scaling behavior of the velocity structure func-
tion.

B. Decomposition in basis tensor functions

Being a rank two tensor field, the pair correlation function
may be decomposed in hyperspherical basis tensor functions
as in �15,23�. Such a decomposition is also an important tool
in analyzing the data from numerical simulations, as wit-
nessed, e.g., in �24�. We shall be concerned only with the
axial anisotropy and apply this decomposition on the Fourier
transform of the pair correlation function. This has the ad-

vantage of making the incompressibility condition very easy
to solve, among other things. We consider only the case of
even parity and symmetry in indices, which leaves us with a
basis of four tensors:

�
Bij

1 �p̂� = 
p
−l�ij�
l�p�

Bij
2 �p̂� = 
p
2−l�i� j�

l�p�
Bij

3 �p̂� = 
p
−l�pi� j + pj�i��l�p�
Bij

4 �p̂� = 
p
−l−2pipj�
l�p�

� �15�

with the actual decomposition

Ĝij�p� ª 

b,l

Bij
b,l�p̂�Ĝl

b�p� . �16�

Here �l�p� is defined as �l�p�ª 
p
lYl�p̂�, where Yl is the
hyperspherical harmonic function �with the multi-index m
=0�. It satisfies the properties

��l�p� = 0,

p · ��l�p� = l�l�p� . �17�

The same decomposition will naturally be applied to the
forcing correlation function as well.

C. Forcing correlation function

We require the forcing correlation function to decay faster
than a power law for large momenta and to behave as
Cij�p��Ld�Lp�2N for small momenta with positive integer N.
The N=0 case corresponds to the usual large scale forcing
with a nonzero “charge” q0=�drCL�r� and is responsible for
the canonical scaling behavior of the passive scalar at large
scales �6�, whereas any N�0 corresponds to a vanishing
charge �6�. Applying the Mellin transform to such a tensor
�decomposed as above� yields

Ĉij
z �p� = 	

0


 dw

w
wd+zĈij�wp� = 
p
−d−z


b

Bij
b �p̂�c̄b

N�z� ,

�18�

with

c̄b
N�z� =

Cb
�L−z

z + d + 2N
, Re�z� � − d − 2N , �19�

and the strip of analyticity −d−2N�Re�z�. The details of
the actual cutoff function are absorbed in the constants Cb

�

and play no role in the leading scaling behavior. All the
interesting phenomena can be classified by using only the
cases N=0 and N=1. We will mostly be concerned with the
latter type of forcing which is also of the type considered in
�6,7�. By inverting the Mellin transform we would obtain an
expression for the forcing correlation function

Cij�t,r� =	 �z
r
zc̄a
N�z�Kab�z�Bij

b �r̂� �20�
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where the matrix K is defined in Appendix D. We note that
c̄a

N determines the large scaling behavior of the above quan-
tity as r−d or r−2−d, depending on the forcing, while the ma-
trix K is responsible for the small scale behavior �rl, where
l is the angular momentum variable.

D. Mellin transformed equation and overview of calculations

As mentioned earlier in this section, Eq. �6� is much too
unwieldy for actual computations. In Appendix A we per-
form a more careful derivation of the equation in Fourier
variables and by using the Itô formula. The resulting Eq.
�A9� still has an inconvenient convolution integral. By ap-
plying the Mellin transform, we obtain an equation

− Dmv
−
ḡb�z� − D0�̃ḡb�z − 
� +	 �z�d̄mv

�z��

�Td+z�,d+z−z�
bc ḡc�z − z�� = c̄b�z − 2� �21�

for the Mellin transformed coefficients ḡb of the tensor de-
composition �16� �defined explicitly in Eq. �A11��. The ma-
trix T is defined in Eq. �A13� and involves rather difficult but

manageable integrals, and �˜is defined in Eq. �A7�. The in-
tegration contour with respect to z� lies inside the strip of
analyticity Re�z��Re�z���0, determined from Eq. �A14�.
For small values of mv the contour may �and must� be com-
pleted from the right. The reason for performing the Mellin
transform becomes evident when one studies the pole struc-

ture of the functions d̄mv
�z�� and T: first two �positive� poles

occur at z�=0 �from T� and at z�=
 �from d̄mv
�z��� and cor-

respond to a term �mv
−
 and a constant in mv, respectively.

The former of these cancels out from the equation, hence one
is free to take the limit mv→0. This leaves us with a simple
equation

− �̃ḡb�z − 
� − Td+
,d+z−

bc ḡc�z − 
� =

1

D0
c̄b�z − 2� . �22�

From now on we absorb D0 in the functions c̄b. In Appendix
B we have applied the incompressibility condition to the

correlation function Ĝij�p� and the equation, which has the
effect of leaving us only with two independent functions to

be solved, ḡ1 and ḡ2. Applying also a translation z→z+
 in
Eq. �23�, we have

− ��̂1 + A + B · X�h�z� = f�z + 
 − 2� , �23�

with the definitions

h = �ḡ1, ḡ2�T,

f = �c̄1, c̄2�T, �24�

and

Td+
,d+z = �A B

C D
�, X = � 0 − �l − 1�

− 1 l�l − 1�
� . �25�

All that remains now is to invert the matrix equation, al-
though in the isotropic sector and in two dimensions it re-
duces to a scalar equation.

III. SOLUTION

Inverting the Mellin and Fourier transforms enables us to
write the full solution as

Gij�r� = −	 �z
r
zhT�z�P̂TK · Bij�r̂� , �26�

where we now have a projected version of the matrix K due
to the incompressibility condition �see Appendix D�, and

h�z� = − ��̃1 + A + B · X�−1f�z + 
 − 2� . �27�

The strip of analyticity is now

2 − d − 
 − 2N � Re�z� � 0, �28�

where N=0 for the traditional nonzero charge forcing and
N=1 for the zero charge forcing. We should note that there
may in fact be poles inside the strip of analyticity due to the
solution h, which is just a reflection of one’s choice of
boundary conditions.

A. Isotropic sector

In the isotropic case when l=0, we have Bij
1 =�ij, Bij

4

= r̂ir̂ j and the other B’s are zero. The equation of motion �23�
is now a scalar equation, hence we only need the �1,1� com-
ponent of the matrix,

��̃1 + A + B · X�11 = 2�a − 1��a
 − 1 − a − d���1 + 
/2���1 + d/2� − pa�z�
��− z/2���d + z + 


2
���4 + d − 


2
�

2��2 + d + z

2
���4 − z − 


2
� � 1/�a�z� ,

�29�

where the equality applies up to a constant term that will be absorbed in the forcing, and we have defined the polynomial

pa�z� = − �a − 1�2�d + 1�
�2 − 
� + �z + 
 − 2���d − 1�z2 + �d�d − 1� + 2a
�z + 
�− d − 1 + 2a�d + 1� − a2�1 + 2d − d2 + 
 − d
��� .

�30�
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This is the same expression �only in a slightly different form�
as in �11�. Expression �26� for the inhomogeneous part of the
correlation function becomes

Gij�r� =	 �z
r
z�a�z�c1�z + 
 − 2�Pij�z�
��− z/2�

��2 + d + z

2
� ,

�31�

where we have introduced the incompressibility tensor

Pij�z� = ��z + d − 1��ij − zr̂ir̂ j� �32�

and irrelevant constant terms were absorbed in the forcing c1.
Henceforth such an assumption will always be implied un-
less stated otherwise.

B. Anisotropic sectors

Now the task is to find the poles of the inverse matrix of

��̃1+A+B ·X�, that are completely determined by the zeros
of its determinant. Denoting

M ª A + B · X

=
�l+d+z,d+


d + 

��11 − �41 �21 − �l − 1��31 + �l − 1�l�41

�12 − �42 �22 − �l − 1��32 + �l − 1�l�42
� ,

�33�

where � and � are defined in Appendix C, we may write

det��̃1 + M� = �̃2 + �̃ tr M + det M . �34�

We refrain from explicitly writing down the determinant,
since the full expression is rather cumbersome and not very
illuminating. It may however be easily reproduced by using
the components �ij given in Appendix C.

C. Two dimensions

The two-dimensional case deserves some special atten-
tion. From the incompressibility requirement in Eq. �B1� and
by direct computation using the two-dimensional spherical
harmonics �eı�, one can see that the correlation function
satisfies the proportionality

Ĝij�p� � �ḡ1 − l�l − 1�ḡ2�Pij�p� . �35�

Therefore in two dimensions the equation is a scalar one also
in the anisotropic sectors. A formula for the solution then
becomes

Gij�r� = −	 �z
r
z
c̄1 − l�l − 1�c̄2

F11 − l�l − 1�F21
�P̂TK�1bBij

b �r̂� , �36�

where F= �̃1+A+B ·X.

D. Example: Passive scalar

As one of the main themes of the present work is to con-
sider the effect of a forcing localized around some finite
wave number mf �1 /L instead of zero, it is useful to review

the case in �7� by the present method �see, e.g., �3,9,21� for
more on the passive scalar problem�, even more so as the
magnetohydrodynamic case in two dimensions bears close
resemblance to the passive scalar �indeed the two-
dimensional case can be completely described as a passive
scalar problem with the stream function taking place of the
scalar�. Using the methods above, we arrive at an expression
similar to Eq. �26�,

G�r� = 

l

Yl�r�	 �z
r
z
cN�z + 
 − 2�

�l�z�

�� l − z − 
 + 2

2
�

�� l + z + d + 
 − 2

2
� ,

�37�

where we have again written the generic constant C� in
which we will absorb finite constants. In the above equation,
N equals zero or one corresponding to the nonzero and zero
charge forcings and

�l�z� = �d − 1��l − z��l + z + d + 
 − 2� + 
l�l − 1� . �38�

The strip of analyticity is now −d−
�Re�z��0. Consider
now the isotropic sector l=0 with the nonzero charge forc-
ing, i.e., N=0. We then have �neglecting the zero modes�

Gl=0�x� = C�L2−
	 �z
r/L
z
��2 − z − 


2
�

z�z + d + 
 − 2�
. �39�

For r�L the integration contour must be completed from the
right, thus capturing the poles z=0, z=2−
 , . . .. The small
scale leading order behavior is therefore

Gl=0 = C�
��1 − 
/2�
d + 
 − 2

L2−
 − C�
1

d�2 − 
�
r2−
 + . . . �40�

where the dots refer to higher order powers of r. The large
scales r�L require a left hand contour, resulting in another
scaling regime,

Gl=0 = C�
��d/2�

d + 
 − 2
Ldr2−d−
 + . . . �41�

We note that the above solution is constant at r=0 and zero
at r=
, thus satisfying the boundary conditions. We con-
clude that the solution is completely nonanomalous, i.e., re-
specting the canonical scaling.

Consider now instead the zero charge forcing with N=1
that is localized around p=1 /L instead of p=0. The large
scale pole due to the forcing at z=−d−
+2 cancels out and
we are left with

Gl=0 = C�	 �z
r/L
z
1

z
��2 − z − 


2
� . �42�

There is now no large scale scaling behavior �the decay is
faster than a power law�. By looking at the l=2 sector,
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Gl=2 = C�L2−
	 �z


r/L
z��4 − z − 


2
�

�2�z��z + 
 + d���z + d + 
�
, �43�

�with a different generic constant C��, we see that the rel-
evant scaling behaviors are obtained from a solution of the
equation

�2�z� = d2�− 2 + z� − z�− 2 + z + 
� + d�− 2 + z��− 1 + z + 
�

= 0, �44�

giving the large scale behavior of the l=2 sector with the
exponent

z− =
1

2
�2 − d − 
 −��d − 2 + 
�2 +

8d�d + 
 − 1�
d − 1

� .

�45�

Therefore we conclude that the large scale behavior is domi-
nated by the anisotropic modes. Note that the anisotropic
modes are also anomalous in that they are not obtainable by
dimensional analysis.

IV. MAGNETOHYDRODYNAMIC TURBULENCE

Setting a=1 in Eq. �1� yields the equations of magneto-
hydrodynamic turbulence �see, e.g., �8,14� and references
therein�. This is a special case in that the problem is com-
pletely local due to the vanishing of the pressure term. In

practical terms, the quantity �̃ is zero, hence we only need to
consider the zeros of the determinant of M in Eq. �34�.

A. Isotropic sector

The isotropic part of the correlation function becomes

Gij�r� = C�	 �z
r
z
cL

N�z + 
 − 2�
p0�z�

Pij�z�
��2 − z − 


2
�

��d + z + 


2
� ,

�46�

where

p0�z� = �d − 1�z�d + z� + ��d − 1�d + 2z�
 + �d − 1�
2

�47�

with another generic constant C�. We find the usual poles at

zn = 2 − 
 + 2n ,

z� =
1

2
�− d −

2


d − 1
� �

�d

2
�d −

4�d − 2�

�d − 1�

−
4�d − 2�
2

�d − 1�2 ,

�48�

where n is a nonnegative integer. For the nonzero charge
type forcing we have cL

0�z+
−2��1 / �z+d+
−2�, which
presents another pole. On the other hand, for the zero charge
forcing we have cL

1�z+
−2��1 / �z+d+
�, which cancels

with a zero of the gamma function. It turns out that this sort
of cancellation occurs for each model, rendering the large
scale behavior anomalous. We will postpone the arbitrary
dimensional case until the end of the present sector and in-
stead consider first the three- and two-dimensional cases.

B. Anisotropic sectors

Note that since det M��l+d+z,d+

2 , the inverse of M is only

proportional to �l+d+z,d+

−1 , so the correct form to look at is

actually det M /�l+d+z,d+
. Dropping z-independent terms we
have

det M

�l+d+z,d+


= C

�� l − z − 2

2
��� l + z + d + 
 − 2

2
�

�� l + z + d + 2

2
��� l − z − 
 + 2

2
��l�z� ,

�49�

where �l�z� is a fourth order polynomial in z and C is a
z-independent constant. Due to its rather lengthy expression,
we shall consider the whole problem in three and two dimen-
sions only. We note immediately that there is also an infinite
number of solutions due to one of the gamma functions,
namely, at

z = l + 2 − 
 + 2n �50�

for non-negative integers n and even l. The other gamma
function cancels with the terms from Eq. �D2�.

C. d=3

We have the four solutions to �l�z�=0 of which the fol-
lowing two are dominant in the small and large scales,

zl
� = −

3 + 


2
�

1

2
�A � 2�2 − 
��B , �51�

where

A = �2 + 
��2l�l + 1� − 6 − 
� + 17,

B = �2 + 
��2l�l + 1� + 
� + 1, �52�

which match exactly to the results obtained in �15,17�, after
some convenient simplifications. The isotropic zero modes
are

z� =
1

2
�3 − 
 � �3�1 − 
��3 + 
�� . �53�

We have plotted the leading poles in Fig. 1 from l=0 to l
=6 together with the pole due to the nonzero charge. We note
that the isotropic exponents become complex valued for 

�1, implying an oscillating behavior and therefore a positive
Lyapunov exponent for the time evolution �8,14�. The above
steady state assumption therefore applies for 0�
�1 only
in the isotropic sector. The fact that the anisotropic exponents
are continuous curves for all 0�
�2 seems to imply that
the steady state exists for all 
 in the anisotropic sectors.
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Indeed, in �15� this was shown to be the case by performing
a more careful eigenvalue analysis.

1. Nonzero forcing charge

In the isotropic sector for the forcing with nonzero charge
N=0 we have

Gij�r�
l=0

= − C�L2−
	 �z


r/L
zPij�z���2 − z − 


2
�

�z − z−��z − z+��z + 1 + 
���3 + z + 


2
�
�54�

with the contour bound −1−
�Re�z��0 and z−�−1−

�z+�0. C� again denotes some generic finite �and positive�
constant. The pole z+ divides the strip of analyticity in two
parts, which correspond to different boundary conditions.
Small scale behavior corresponds to picking up the poles to
the right of the contour and large scale behavior corresponds
to left hand side poles. We note that both the zero modes z�

are negative, except that z+=0 at 
=0. Therefore z+ cannot
be a large scale exponent, as the solution has to decay at
infinity. The real strip of analyticity is then in fact −1−

�Re�z��z+, thus resulting in the small scale behavior

Gij
� = C1rz+Pij�z+� �55�

and the large scale behavior

Gij
� = C2r−1−
Pij�− 1 − 
� �56�

We note that the large scale behavior is determined by the
forcing and therefore respects canonical scaling.

2. Zero charge forcing

Because of the pole cancellation we now have a similar
expression,

Gij�r�
l=0 = C�L2−
	 �z


r/L
zPij�z���2 − z − 


2
�

�z − z−��z − z+���5 + z + 


2
� ,

�57�

where the strip of analyticity is now −3−
�Re�z��0. The
contour bound now encloses both of the zero modes �see

again Fig. 1�. In addition to the above considerations with a
forcing of nonzero charge, we conclude that z− cannot be
present at small scales due to regularity conditions at 
=0, so
the real strip of analyticity is in fact z−�Re�z��z+. This
gives rise to the small scale behavior

Gij
� = C1rz+Pij�z+� �58�

for the small scales and

Gij
� = C2rz−Pij�z−� �59�

for the large scales. The large scales are therefore dominated
by the smaller zero mode z− instead of the exponent −1−
 as
with the nonzero charge forcing and is therefore anomalous.
However, unlike in the passive scalar case, the anisotropic
exponents are subdominant at both small and large scales
�see Fig. 1� and we therefore conclude that there is isotro-
pization at both scales.

D. d=2

The �dominant� zero modes in two dimensions are

zl
+ = − 4 − 
 + �4l2�1 + 
� + 
2,

zl
− = − 3
 − �4l2�1 + 
� + 
2 �60�

of which we separately mention the isotropic zero modes,

z+ = − 
 ,

z− = − 2 − 
 . �61�

The expression for the inhomogeneous part of the correlation
function is

Gij�r�
l=0 = C�L2−
	 �z
r/L
zcL�z + 
 − 2�Pij�z�
��− z − 


2
�

��4 + z + 


2
�

�62�

with contour bound is −2−
�z�0 together with the bound
from the forcing.

1. Nonzero charge forcing

Because cL�1 / �z+
�, the expression for the isotropic sec-
tor of the correlation function simplifies to

l = 2

l = 2

l = 4

l = 6

l = 4

(a) d=3

l = 2

l= 0

l = 2

l = 4

l = 6

l = 4

(b) d=2

0 1 201 2

4

6

2

0

-2

-4

-6

z

4

6

2

0

-2

-4

-6

z

» »

FIG. 1. The MHD scaling ex-
ponents of the isotropic, l=2, l
=4, and l=6. In �a� the isotropic
poles z+�z− are adjoined at 
=1.
The dashed line in �a� corresponds
to the forcing with nonzero charge
with a pole at −1−
, whereas for
the zero charge forcing there are
no poles. In �b� the zero modes are
never adjoined.
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Gij�r�
l=0 = C�L2−
	 �z
r/L
zPij�z�
��− z − 


2
�

�z + 
���4 + z + 


2
� ,

�63�

where the bound is now −
�Re�z��0. Note the appearance
of a double pole at z=−
 giving rise to logarithmic behavior.
There are now no poles inside the contour bound, so finding
the asymptotics is easy. We observe that there are no small
scale poles and therefore the correlation function decays
faster than any power at small scales, whereas at large scales
we have

Gij
� = C� log�r/L�L2−

r/L
−
Pij�− 
� + C�L2−

r/L
−
Pij� �− 
� ,

�64�

where Pij� �−
�=�ij − r̂ir̂ j to ensure incompressibility and
other next to leading order nonlogarithmic terms were dis-
carded. By looking at Fig. 1 we see that there is a hierarchy
of small scale exponents in the anisotropic sectors. We there-
fore make the conclusion that in two dimensions the aniso-
tropic effects in the MHD model are dominant at small scales
for a forcing of nonvanishing charge, conversely to the pas-
sive scalar case. Note that setting 
=0 in the above equation
reproduces correctly the usual logarithmic behavior of the
diffusion equation steady state with an infrared finite large
scale forcing.

2. Zero charge forcing

We now have cL�1 / �z+
+2� and the isotropic correla-
tion function becomes

Gij�r�
l=0 = − C�L2−
	 �z
r/L
zPij�z�
��− 1 −

z + 


2
�

��4 + z + 


2
�

�65�

with the usual strip −2−
�Re�z��0. There are no double
poles and the leading simple poles are just at z=−
 and
z=−2−
, so the asymptotic behaviors at small and large
scales are simply

Gij
� = C�
r/L
−
Pij�− 
� ,

Gij
� = C�
r/L
−2−
Pij�− 2 − 
� . �66�

As in the three-dimensional case, all the anisotropic expo-
nents are now subleading at both small and large scales �see
Fig. 1�, so we conclude that there is again isotropization at
both regimes. Note also that the large scale behavior is due to
the forcing and therefore nonanomalous.

3. Any dimension, zero charge forcing

For the sake of completeness, we write explicitly the so-
lutions in any dimension d�2 in the isotropic sector for the
zero charge forcing:

Gij
� =

C�

2
L2−

r/L
z+

Pij�z+�
z+ − z−

��2 − z+ − 


2
�

��2 + d + z+ + 


2
�

− C�r2−

Pij�2 − 
�

�2 − 
 − z−��2 − 
 − z+�
1

��2 + d/2�
+ O�r4−
� ,

Gij
� =

C�

2
L2−

r/L
z−

Pij�z−�
z+ − z−

��2 − z− − 


2
�

��2 + d + z− + 


2
� , �67�

where we have neglected the possible exponentially decay-
ing terms. The anisotropic sectors produce rather cumber-
some expressions and we will be satisfied with only the nu-
merical results in the figures. We observe that the large scale
behavior is always dominated by the negative zero mode
exponent z− and is therefore always anomalous �except in
two dimensions�. It is also fairly easy to see that the aniso-
tropic exponents are always subdominant, so that there is
isotropization at both small and large scales.

V. LINEAR PRESSURE MODEL

Setting a=0 in Eq. �1� produces the equation known as
the linear pressure model �LPM� �see, e.g., �11,12,18� and
references therein; sometimes this model is just called
the passive vector model� By looking at Eq. �A9�, we see

that when Ĝ���d��p�, the left-hand side evaluates to
�a2
p
2−d−
Pij�p�. Therefore for a=0 there is a constant zero
mode analogously to the passive scalar case. This is true for
the anisotropic sectors as well ��12,18��. This constant zero
mode, however, vanishes for the structure function, so in the
present case we also consider the next to leading order term.
The first thing to note in the isotropic sector is that when a
=0, z=−d is a solution of the equation

1

�0�z�
= 2�d + 1���1 + 
/2���1 + d/2�

+ p0�z�
��1 − z/2���d + z + 


2
���4 + d − 


2
�

��2 + d + z

2
���4 − z − 


2
� = 0,

�68�

where

p0�z� = �d2 − z��z + 
 − 2� + d�z − 2��z + 
 − 1� − 
 . �69�

However, as we see from the definition of the incompress-
ibility tensor in Eq. �32�, for the trace �in indices� we have

Pii�z� = �d − 1��d + z� , �70�

which produces a canceling z+d term in the numerator. A
physically more realistic quantity would however be a con-
traction with x̂ix̂ j than the trace, since we are more interested
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in the structure functions of the model. Another exact solu-
tion is z=2−
. Other nonperturbative solutions can only be
obtained numerically.

A. Any dimension

We have plotted some of the poles in Fig. 2 in three di-
mensions. Remembering the z=−3 solution, we see that the
anisotropic exponents are less dominant with increasing l �a
behavior repeated for higher l as well�.

1. Nonzero charge forcing

The contour bound is now 2−d−
�Re�z��0, so there is
no controversy in the choice of which poles to include. The
small and large scale behaviors are similar to the passive
scalar, and for completeness, we give the results in any di-
mension:

Gij
� = AL2−
�ij − Br2−
Pij�2 − 
� ,

Gij
� = A�L2−

r/L
2−d−
Pij�2 − d − 
� . �71�

The A ,B and A� are somewhat complicated transcendental
functions of d and 
.

2. Zero charge forcing

Now the forcing contributes a pole �1 / �z+
+d� and the
contour bound is −d−
�Re�z��0. The quantity �0 in Eq.
�68� has a zero there that cancels with the pole from the
forcing. Therefore we again conclude that the forcing does
not contribute in the scaling. The small scale behavior is
therefore same as above, but the large scale isotropic sector
of the correlation function behaves as

Gij
� = C�
L
2−
�A�
r/L
−dPij�− d� + B�
r/L
z−Pij�z−�� ,

�72�

where A� and B� are again some nonzero constants �depend-
ing of d and 
�, z− is the l=2 large scale mode �see Fig. 2�
and we have the traceless tensor

Pij�− d� = dr̂ir̂ j − �ij . �73�

By looking at Fig. 2 we observe that the subleading exponent
z− is smaller than the anisotropic exponent l=2 in three di-
mensions and l=4 at two dimensions �except when 
 is close

to two, when the l=2 exponent is larger than the l=4 expo-
nent�. Therefore the trace of the correlation function is domi-
nated by the anisotropic modes.

VI. LINEARIZED NAVIER-STOKES EQUATION

Setting a=−1 in Eq. �1� yields the linearized Navier-
Stokes equation �see e.g., �1,25,26��. The equation may be
considered as zeroth order perturbation theory of the full
Navier-Stokes turbulence problem, from which one can at
least in principle proceed to higher orders in perturbation
theory. It will also serve as a stability problem where the
background flow is determined by the Kraichnan ensemble
instead of a solution to the Navier-Stokes equation �see
Chap. III of �26��. Not much is known of this case, except for
the perturbative results in �11,12�. Equation �29� becomes

1

�−1�z�
= 4�d + 
���1 + 
/2���1 + d/2�

− p−1�z�
��− z/2���d + z + 


2
���4 + d − 


2
�

2��2 + d + z

2
���4 − z − 


2
� ,

�74�

with

p−1�z� = �z + 
��− 2z + 2
 + d2�z + 
 − 2� − �z + 
�2

+ d�2 + �z − 3�z − �3 − 
�
�� + 4z2. �75�

We choose to save space by not writing down explicitly the
determinant for the anisotropic sectors. The expression may
be reproduced by using the results of Appendix C. We will
also refrain from explicitly writing down expressions for the
correlation functions, as it turns out that whichever sector
has the leading exponents varies quite a bit with different
values of 
.

A. d=3 with zero charge forcing

The contour bound is, as usual, −3−
�Re�z��0 and
again one observes a cancellation of the corresponding pole.
Inspecting Fig. 3 one observes quite wild behavior of the
various scaling exponents at a first few sectors. A notable
similarity to the three-dimensional MHD case �a=1� are the

l =4

l =2

l=0

(a)d=3

l =4

l =2

l =0

(b)d=2

6

4

2

0

-2

-4

-6
0 1 2

z

» »

6

4

2

0

-2

-4

-6
210

z

FIG. 2. The linear pressure
model scaling exponents of the
sectors l=0, l=2, and l=4 in three
�a� and two �b� dimensions. The
z=0 and z=−d are omitted for the
sake of clarity. We note that in two
dimensions, there is a z=2 expo-
nent in the l=2 sector but the l
=4 sector’s exponent goes slightly
above z=2.

ANOMALOUS SCALING AND ANISOTROPY IN MODELS OF… PHYSICAL REVIEW E 79, 056303 �2009�

056303-9



exponents starting at 0 and −3 and joining at 
�0,35. How-
ever in the LNS case one also sees similar behavior near 

=2. Indeed one is tempted to assume the existence of a
steady state only for 
 near zero and two. The same conclu-
sion could be drawn for the anisotropic sectors as well. We
will further discuss this at the end of the paper. We will be
satisfied with only reporting the scaling behaviors as the pro-
cedure for finding them is close to above cases. Assuming
the steady state exists for 
 close enough to zero and two, we
conclude that for 
 near zero, the small and large scale are
dominated by the isotropic exponents starting at 0 and −3,
respectively. For 
 near 2, one instead observes l=2 domi-
nance at small scales and l=4 dominance at large scales. We
have deliberately neglected the nonzero charge forcing, as
that would only bring about the familiar nonanomalous −1
−
 scaling at large scales.

B. d=2 with zero charge forcing

The behavior of the scaling exponents is much nicer, as
can be seen by looking at Fig. 3. For 0�
�1,3, we see the
small scales dominated by the l=4 anisotropic sector, and the
large scale by the l=2 sector. For other values of 
 the l=2
anisotropic sector dominates the small scales as well. The l
�4 anisotropic exponents are all subleading with respect to
the ones in the figure, and indeed respect the usual hierarchy
of exponents �11�. In any case, the isotropic exponent is sub-
leading.

VII. EFFECT OF VARYING THE PARAMETER a

It is useful to discuss also other values of a beside the
discrete values a=1,0 ,−1. More specifically, looking at Fig.
4 we see how the closed contour determining the leading

scaling exponents is deformed as a varies from a=1 and a
=−1 to 0. Both end up as curves z=0 and z=−3. Also, as we
know that when a=1 the steady state exists for 
�1 in the
isotropic sector �8� �and for all 
 in the anisotropic sectors
�15��, it now seems even more reasonable to expect the
steady state to exist for all 
 in the a=0 case.

VIII. CONCLUSION

The purpose of the present paper was to present an exact
solution for the two point function of the so-called a model
in the small and large scaling regimes, which incorporates
the magnetohydrodynamic equations, the linear pressure
model, and the linearized Navier-Stokes equations. The phe-
nomena of anomalous scaling and anisotropy dominance
were investigated in each model with emphasis placed in the
zero charge forcing concentrated at a finite wave number
�1 /L as in �6�. Below we briefly summarize the findings in
each model.

For the magnetohydrodynamic equations with a=1 the
leading scaling behavior was observed to be anomalous and
isotropic at both small and large scales in three dimensions
for the zero charge forcing, in accordance with previous
small scale results �13,15,17�. In two dimensions with non-
zero charge forcing one observes anomalous and anisotropic
behavior at small scales, while the large scales are dominated
by logarithmic behavior. The mechanism of the small scale
anisotropy dominance is strikingly similar to the passive sca-
lar large scale anisotropy dominance, except that in the
MHD case the phenomenon results from the nonzero charge
forcing. The zero charge forcing case in two dimensions is in
agreement with the results in �8�.

For the linear pressure model with a=0 and zero charge
we recovered the small scale exponents of �18�. The small

l =4
l =2
l =0
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l=2
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(b)d=2
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FIG. 3. The linearized Navier-
Stokes equation exponents for
sectors l=0, l=2, and l=4 �the
legend applies to both figures� at
three and two dimensions. In �a�
the l=4 curves run slightly below
and above the curves z=−3−
 and
z=2, respectively. Other than
leading exponents are also
displayed.
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FIG. 4. The leading isotropic
exponents as a is varied from 1 to
0 �a� and from −1 to 0 �b� in three
dimensions. The darkest curves
correspond to a=1 and a=−1.
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scale behavior is now dominated by the isotropic and canoni-
cal scaling exponent z=2−
 �neglecting the constant mode
by considering the structure function�. The large scale behav-
ior was seen to be dominated by a curious isotropic zero
mode z=−d, although the trace of the structure function ex-
hibits anomalous and anisotropic behavior at large scales.
The nonzero charge forcing simply renders the large scale
behavior canonical. The existence of the steady state is nev-
ertheless controversial in two dimensions and requires
further study.

The linearized Navier-Stokes equations corresponding to
a=−1 seem to be the most interesting of the models consid-
ered, even more so because it is also the least well known.
There still remains the question of the existence of the steady
state, without which one cannot claim to have completely
solved the problem. One may however conjecture its exis-
tence at least for small enough 
 �at least in the isotropic
sector�, in which case the small and large scales are domi-
nated by the isotropic anomalous scaling exponents in three
dimensions. In two dimensions, the small scale exponents
coincide with the somewhat rough numerical estimates of
�20�, the difference now being the absence of the scaling
�r−
 due to the forcing. Indeed, it was observed that both the
small and large scales were dominated by anomalous aniso-
tropic scaling exponents.

Although the linear equations above with the somewhat
crude Kraichnan model are certainly some distance from the
real problem of turbulence, similar scaling behavior has been
observed in real and numerical simulations �see, e.g., �24,27�
and references therein�, namely, implying that the scaling
exponents in each anisotropic sector are universal as outlined
above. Probably the closest case to the real Navier-Stokes
turbulence is the linearized Navier-Stokes equation. The
equation arises usually as one tries to verify the stability of a
given stationary flow by decomposing the velocity field as
v+u, where v is the stationary, time-independent term and u
is a small perturbation �26�. If one can show that u decays in
time, the velocity field v is indeed a laminar, stable flow. In
our case v is determined by the Kraichnan model and we are
now concerned with the stability of the statistical steady
state. It has been pointed out in �12� that in such a case one
might be able to show that higher order perturbative terms
are irrelevant in the sense of the renormalization group, thus
implying that the steady state is in fact in the same univer-
sality class as the full NS turbulence. This would mean that
the anomalous scaling exponent of the linear model is equal
to the NS turbulence exponent. All this would of course de-
pend on the existence of the steady state for u. Unfortunately
it seems that such a steady state does not exist for the expo-
nent 
=2 /3, which could be a sign of incompleteness of the
Kraichnan model or a symptom of the general complexity of
the problem of turbulence. The stability and existence prob-
lem will be studied more carefully in a future paper by the
present author.
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APPENDIX A: EQUATION OF MOTION FOR THE PAIR
CORRELATION FUNCTION

We take the Fourier transform of Eq. �1� and rewrite it as
a stochastic partial differential equation of Stratonovich type
as

dûi�p� = − �p2ûi�p�dt − D̂i��
p 	 �dqdV̂��q� � û��p − q�

+ dF̂i�p� , �A1�

where we have dropped the t dependence and denoted

D̂iab
p = i��iapb − a�ibpa� + i�a − 1�pipapb/p2 �A2�

and defined the Stratonovich product

dV̂��q� � û��p − q� = dV̂��t,q�û��t +
dt

2
,p − q� . �A3�

As argued in �28� by physical grounds, the symmetric pre-
scription ��0�=1 /2, corresponding to the Stratonovich defi-
nition of the SPDE, is the correct way of defining the equa-
tion. We will however use the relation û��t+ dt

2 ,p�= û��t ,p�
+ 1

2dû��t ,p� to transform the equation into a following Itô
SPDE,

dûi�p� = − �p2ûi�p�dt +
1

2
D̂i��

p 	 �dqD̂�	�q�D̂��	
p−q û��p�

− D̂i��
p 	 �dqdV̂��q�û��p − q� + dF̂i�p� , �A4�

where we have used the relation

dV̂i�t,p�dV̂j�t,p�� = D̂ij�p��d�p + p��dt . �A5�

The first integral on the right-hand side of the Itô SPDE can
be done explicitly, resulting in

−
1

2
D̂i��

p 	 �dqD̂�	�q�D̂��	
p−q û��p� = Dmv

−
p2ûi�p� + �̃p2−
ûi�p�

+ O�mv
+� , �A6�

where the incompressibility condition piûi�p�=0 was used,
and denoting

�̃ = �a − 1��d + 1 + a�1 − 
��
d�
 csc��
/2���d/2�cd

16��d − 


2
+ 2���d + 


2
+ 1� .

�A7�

Applying the Itô formula to the quantity
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�ûi�t,p�ûj�t,p��� � Ĝij�t,p��d�p + p�� �A8�

and by assuming stationarity, one obtains the nonlocal PDE
�with obvious p dependence omitted�

�2� − Dmv
−
�
p
2Ĝij − �̃D0
p
2−
Ĝij

+ D̂i��
p D̂ j�	

−p 	 �dqD̂�	�q�Ĝ���p − q� = Ĉij . �A9�

Using the SO�d� decomposition for Ĝ,

Ĝij�p� ª 

a

Bij
a �p̂�Ĝa�p� �A10�

�and similarly for Ĉ�, dividing the equation by p2, and by
taking the Mellin transform of the equation while remember-
ing the definition

Ĝij
z �p� = 	

0


 dw

w
wd+zĜij�wp� = 
p
−d−z


q

Bij
a �p̂�ḡa�z� ,

�A11�

and by expressing D̂ in the integrand as an inverse Mellin
transform, we finally obtain the equation

�2� − Dmv
−
�ḡb�z� − �̃D0ḡb�z − 
�

+	 �z�d̄mv
�z��Td+z�,d+z−z�

bc ḡc�z − z��

= c̄b�z − 2� , �A12�

where we have defined �note the transpose in definition�



b

Td+z�,d+z−z�
cb Bij

c �p̂�

= 
p
d+z−2Di��
p D j�	

−p 	 �dq
P�	�p − q�B��

b �q�


p − q
d+z�
q
d+z−z�
,

�A13�

with the strips of analyticity,

Re�z� − Re�z�� � 0,

Re�z�� � 0,

d + Re�z� � 0, �A14�

such that the 9�9 matrix T is independent of p. The matrix
elements Tbc can be determined exactly by computing the
right-hand side integral, which is the subject of the next ap-
pendix. As mentioned in Sec. II D, the first poles on the right
occur at z�=0 and z�=
, which results in the equation in the
limit of vanishing mv:

�2� − Dmv
−
�ḡb�z� − D0�̃ḡb�z − 
� + d̄mv

�0�Rbcḡc�z�

− D0Td+
,d+z−

bc �z�ḡc�z − 
�

= c̄b�z − 2� . �A15�

We have defined the residue matrix

Rbc = R�Td+z�,d+z−z�
bc �
z�=0 �A16�

and used the residue of the velocity correlation at z�=
:

Rz�=
�d̄mv
�z��� = − D0. �A17�

APPENDIX B: INCOMPRESSIBILITY CONDITION

The incompressibility condition for u and f amounts to
requiring that the contraction of the covariances �16� with p
is zero, i.e.,


p
d+z+lpiĜij
z �p� = �pjḡ1 + lpjḡ3 + pjḡ4��l�p�

+ 
p
2��l − 1�ḡ2� j + ḡ3� j��l�p�

� 0, �B1�

which gives a system of equations

ḡ1 + lḡ3 + ḡ4 = 0,

�l − 1�ḡ2 + ḡ3 = 0. �B2�

We can achieve this conveniently by defining a projection
operator

P̂ = � 1 0

X 0
� , �B3�

where

X = � 0 − �l − 1�
− 1 l�l − 1�

� . �B4�

The solution to Eq. �B2� �and a similar one for the forcing�
can then be written conveniently as

g ª � h

X · h
�, c ª � f

X · f
� . �B5�

We also rewrite the matrices R and T in block form as

R = �R1 R2

R3 R4
�, Td+
,d+z = �A B

C D
� . �B6�

Note the above definition of T with a translation z→z+
. R
is independent of z. By operating with P̂ on Eq. �23�, we
obtain the equations �after translation z→z+
�,

�2� − Dmv
−
�h�z + 
� + d̄mv

�0��R1 + R2 · X�h�z + 
�

− �̃D0h�z� − D0�A + B · X�h�z� = f�z + 
 − 2� �B7�

and an identical one but multiplied by X from the left. Thus
we see that we only need the upper 2 by 2 matrices from T.
By using the definition Eq. �A16� and the results for Tab in
Appendix C, we obtain

R1 + R2 · X = −
d − 1

��d/2 + 1�
cd1, �B8�

which results in a cancellation of the remaining mass-
dependent terms. The remaining equation depends now only
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on the physical diffusivity �. Solving the equation iteratively
would amount to a series expansion in powers of � or �−1,
but we shall only consider the �→0 limit, which produces
the solution in Eq. �23�.

APPENDIX C: NECESSARY COMPONENTS
OF THE MATRIX T

Due to incompressibility, only some of the components of
T will be needed. Computing the integrals of the type in Eq.
�A13� can be performed by using the result

	 �dq
�l�q̂ · ê�


q
2�
p − q
2� ¬ �2�,2�
p
d−2��+���l�p̂ · ê� , �C1�

where we have denoted by q̂ · ê the angle between q and the
z axis and defined

�2�,2� ª
��d/2 + l − ����d/2 − ����� + � − d/2�

����������d + l − � − ��
.

�C2�

The tensorial structure can be obtained by partial integrations
and by taking derivatives in p. We will further define �note
the transpose in the definition�

Td+
,d+z
ab

ª

�l+d+z,d+


d + 

�ab�z� . �C3�

The necessary components of � are �others do not contribute
due to the incompressibility condition�:

�11 =
�1 + a2��d − 1��l − z� − a2
�z + d + 
 − l�

�l − z − 
�

+
l�l − 1�


�l − z − 
��l + z + d + 
 − 2�
,

�12 =
a2


�l − z − 
��l + z + d + 
 − 2�
,

�21 = a2l�l − 1�
l + z + d − 2

l + z + d + 
 − 2
�d − 1 + 


z − l + d + 
 + 2

z − l + 2
� ,

�22 =
�d − 1��l + z + d − 2�

l + z + d + 
 − 2
+

�l − 2�
�a2�l − 3� + 2a�z + d + 1� + l − 3�
�l − z − 2��l + z + d + 
 − 2�

+
�a − 1�2�2 − 
�
�l2 − 5l + 6�

�l − z − 2��l + z + d + 
 − 2��l + z + d + 
 − 4�
,

�31 =
2al
�z + d + 
 − 1�

�l − z − 
��l + z + d + 
 − 2�
+ 2a2l� z + l�d + 
 − 1� − �d + 
��z + 
�

l − z − 


−
�l − 1�
�d + 
 − 1�

�l − z − 
��l + z + d + 
 − 2�
−

�l − 1��2 − 
��d + 
�

�l − z − 2��l − z − 
��l + z + d + 
 − 2�� ,

�32 = 2

a�d − 1 + a�l − 2� + z + 
� − d − 1

�l − z − 
��l + z + d + 
 − 2�
+

4a�l − 2��2 − 
�

�l − z − 2��l − z − 
��l + z + d + 
 − 2�

+
2
�a − 1�2�l2 − 5l + 6��2 − 
�

�l − z − 2��l − z − 
��l + z + d + 
 − 4��l + z + d + 
 − 2�
,

�41 =
a2��d + 
��z + 
� − l�d + 
 − 1� − z� − 2a


l − z − 

+ 


d + 1 + 2a�l − 1� + a2�1 + 2d − d2 − 
�d − 1��
�l + z + d��l − z − 
�

+
�a − 1�2�d + 1��2 − 
�


�l + z + d��l − z − 
��l + z + d + 
 − 2�
− �2 − 
�


�a − 1�2�d2 + l�l + 1�� + d��1 + 2l��1 − 2a� + a2�1 + 3l − l2��
�l − z − 2��l + z + d��l − z − 
��l + z + d + 
 − 2�

+
2�a − 1�2�d + l��d + 1 + l�
�
2 − 6
 + 8�

�l − z − 2��l + z + d��l − z − 
 + 2��l − z − 
��l + z + d + 
 − 2�
,

�42 =
a
�a�l + z + d� − 2�2 − 
��

�l + z + d��l − z − 
��l + z + d + 
 − 2�
−

�2 − 
�
�d + 3 − 2a�d + 1 + l� + a2�d + 3��
�l − z − 2��l + z + d��l − z − 
��l + z + d + 
 − 2�

+
�a − 1�2
�d + 3��8 − 6
 + 
2�

�l − z − 2��l + z + d��l − z − 
��l − z − 
 + 2��l + z + d + 
 − 2�

+
�a − 1�2
�6 − 5l + l2��8 − 6
 + 
2�

�l − z − 2��l + z + d��l − z − 
��l − z − 
 + 2��l + z + d + 
 − 4��l + z + d + 
 − 2�
.
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APPENDIX D: THE MATRIX P̂TK

We defined the matrix K as

KabBij
b �r̂� =	 �dpeip·rBij

a,l�p̂�

p
d+z , �D1�

where the elements are obtained by direct computation. Mul-
tiplication with the transpose of projector �B3� yields

PTK = ı2−z

�� l − z

2
�

��d + l + z

2
� , �D2�

where  is now a 2�4 matrix,

 =�1 −
1

z + d + l

− 1

�z + 2 − l��z + d + l�
− 1

z + d + l
−

z − l

z + d + l

l�l − 1�
z + d + l

�z + d�2 − l

�z + d + l��z + 2 − l�
z + d − 1 +

l�l − 1�
z + d + l

2�z − l��z + d + l − 2� +
l�l − 1�
z + d + l

� . �D3�
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